AP]

This document provides an overview and documentation for the APl implemented in the provided
code. The API allows clients to interact with a server for managing agents and uploading files.

Base URL

Endpoints

Database Connection

User Folder Creation

RSA Key Pair Generation and Storage



Base URL

The API create its own nodejs server at this address

http://localhost:5000/



Endpoints

Create a New Agent

e URL: /api/agent/new

Method: POST

Description: Create a new agent and store its information in a MySQL database.

Request Body:

o versionOS (required): The version of the operating system running on the agent.

o host (required): The host name or IP address of the agent.

o hookUser (required): The hook user of the agent.

Response:

o Status Code: 200 OK on success, 400 Bad Request if parameters are missing or
invalid, 500 Internal Server Error if an error occurs during database insertion.

o Response Body:

{
"data": {
"id": "<agentld>",
"publicKey": "<publicKey>"
h
"error": {}
}
e Example:

POST /api/agent/new HTTP/1.1
Host: localhost:5000

Content-Type: application/json

{

"versionOS": "1.0",
"host": "example.com",
"hookUser": "john.doe"

}

Upload a File

o URL: /api/file/upload/:user_folder



Method: POST

Description: Upload a file and save it in the specified user folder.

Request Parameters:

o user_folder (required): The user folder to which the file should be uploaded.

Request Body:

o The file to be uploaded should be sent as multipart/form-data with the file field
name set to file.

Response:

o Status Code: 200 OK on success, 400 Bad Request if no file is uploaded.

o Response Body:

{
"data": {
"success": "<filename> uploaded successfully."

1

"error": {}

}

e Example:
POST /api/file/upload/123 HTTP/1.1

Host: localhost:5000
Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZuOgW

------ WebKitFormBoundary7MA4YWxkTrZuOgW
Content-Disposition: form-data; name="file"; filename="example.txt"
Content-Type: text/plain

This is the content of the file.

------ WebKitFormBoundary7MA4YWxkTrZuOgW--



Database Connection

The API connects to a MySQL database for storing agent information. The database connection
details are specified using environment variables:

e DB_HOST: The host name or IP address of the MySQL database.
e DB_USER: The username for accessing the MySQL database.

e DB_PASS: The password for accessing the MySQL database.

o DB_MAIN: The name of the main database.



User Folder Creation

The API creates a folder named /CTHULHU/users if it doesn't already exist. Additionally, for each
agent created, a user-specific folder is created within /CTHULHU/users .

Folder Structure

The folder structure is as follows:

e /CTHULHU
o Jusers
o /[<agentld_1>
o /<agentld 2>
o ...

o /<agentld_n>

Folder Creation Process

When a new agent is created, the API performs the following steps:

1. Checks if the /CTHULHU/users folder exists.
2. If the folder doesn't exist, it is created.
3. Creates a user-specific folder within /CTHULHU/users for the agent using the agent's ID.

Example

Let's assume that the API receives a request to create a new agent with the ID 123 . Here's the
folder creation process:

1. The API checks if the /CTHULHU/users folder exists.
2. If the folder doesn't exist, it creates the /CTHULHU/users folder.
3. The API creates a user-specific folder named /CTHULHU/users/123 for the agent with ID 123.

The created folder structure would be:

e /CTHULHU
o Jusers
o /123



RSA Key Pair Generation and
Storage

For each agent created, the API generates an RSA key pair consisting of a public key and a private
key. The key pair is generated using a modulus length of 4096 bits. The generated keys are stored
in the MySQL database along with other agent information.

Key Generation Process

When a new agent is created, the API performs the following steps to generate the RSA key pair:

1. Generates an RSA key pair using the crypto.generateKeyPairSync method with the following
options:
e Algorithm: RSA
e Modulus Length: 4096 bits
e Public Key Encoding: PKCS#1 format in PEM encoding
e Private Key Encoding: PKCS#1 format in PEM encoding
2. The generated public key and private key are converted to string representations.
3. The public key string is stored in the pubkey field of the agent's record in the MySQL

database.
4. The private key string is stored in the privkey field of the agent's record in the MySQL

database.

Example

When a new agent is created, the APl generates an RSA key pair. Let's assume the key generation
process produces the following keys:

e Public Key:

MIICIJANBgkghkiGOWOBAQEFAAOCAG8AMIICCgKCAgEAYDRa5PEVYI2T3EzvGlon

d80u9azXQIDAQAB



e Private Key:

MIJKQIBAAKCAgQEAYDRa5PEVYI2T3EzvGlonC4vPwL...

8RTgJ8SPaHv/SmB2DhYO98C6HpU=

The generated keys are then stored in the agent's record in the MySQL database.



