
API connection

Overview
This code provides a C2API struct that encapsulates functionalities related to interacting with a
command and control (C2) API. It includes methods for making POST and GET requests, retrieving
public IP information, and uploading files to the C2 server.

The code relies on the following dependencies:

Make sure to add these dependencies to your project's Cargo.toml file.

Usage
To use this code, create an instance of the C2API struct and call its methods. Here's an overview of
the available methods:

new

This method creates a new instance of the C2API struct and initializes the base URL for the C2 API.

use reqwest::{
 blocking::multipart::{Form, Part},
 Client, Error, Response,
};
use serde_json::{json, Value};
use std::{
 collections::HashMap,
 fs::File,
 io::{self, Read, Seek},
 str::FromStr,
};

pub fn new() -> Self

format_response

This private method formats the response received from the API into a HashMap<String, Value> . It
handles success and error cases, returning the response as a HashMap for further processing.

post

This method sends a POST request to the C2 API with the provided JSON body and URI. It returns
the response as a HashMap<String, Value> .

get_public_ip_info

This method retrieves public IP information by sending a GET request to an external service. It
returns the response as a HashMap<String, Value> .

upload_file

This method uploads a file to the C2 server in chunks using a multipart/form-data request. It takes
the file path and user ID as parameters and returns Ok(()) if the upload is successful or an error if
any issues occur.

Limitations
The code assumes the use of the reqwest library for making HTTP requests. Other HTTP
libraries are not supported.
The code relies on specific endpoints and response formats from the C2 API. Modifying the
API or using a different API may require adjustments to the code.

Examples

async fn format_response(self, response: Result<Response, Error>) -> HashMap<String, Value>

pub async fn post(self, json_body: &Value, uri: &str) -> HashMap<String, Value>

pub async fn get_public_ip_info(self) -> HashMap<String, Value>

pub fn upload_file(self, file_path: String, user_id: &str) -> Result<(), Box<dyn std::error::Error>>

Example usage of the C2API struct:

Note: Replace the placeholder values with appropriate data for your use case.

let api = C2API::new();

// Example: Send a POST request
let json_body = json!({"name": "John", "age": 30});
let uri = "endpoint";
let response = api.post(&json_body, uri).await;
println!("Response: {:?}", response);

// Example: Retrieve public IP information
let ip_info = api.get_public_ip_info().await;
println!("Public IP info: {:?}", ip_info);

// Example: Upload a file
let file_path = "path/to/file.txt";
let user_id = "user123";
match api.upload_file(file_path.to_string(), user_id) {
 Ok(_) => println!("File upload successful!"),
 Err(err) => println!("File upload failed: {:?}", err),
}

Revision #2
Created 3 July 2023 10:24:43 by Makito
Updated 3 July 2023 12:35:08 by Makito

