
Main.rs

Overview
This code represents an entry point for a program that performs certain actions based on
command-line arguments. It imports and utilizes modules c2 , encryption , and system for various
functionalities related to interacting with a C2 API, encryption, and system information.

The code relies on the following dependencies:

Make sure to add these dependencies to your project's Cargo.toml file.

Usage
The code checks the command-line arguments and performs different actions based on the number
of arguments.

Case 1: No Arguments
If no arguments are provided, the code checks if a debugger or sandbox environment is detected
using the sandbox module from the system module.

mod c2;
mod encryption;
mod system;
use base64::{engine::general_purpose, Engine as _};
use serde_json::json;
use std::{
 env,
 fs::{read_to_string, File, OpenOptions},
 io::Write,
 process::exit,
};

If no debugger or sandbox is detected, the code proceeds with the following steps:

1. Creates an instance of C2API from the c2 module.
2. Retrieves public IP information using the get_public_ip_info method of C2API .
3. Checks if an error occurred during the retrieval of public IP information. If so, it prints the

error message and exits.
4. Retrieves system information such as hostname and username using the info module

from the system module.
5. Constructs a JSON body containing system information and public IP details.
6. Sends a POST request with the JSON body to the C2 API endpoint /agent/new using the

post method of C2API .
7. Checks if an error occurred during the POST request. If so, it prints the error message and

exits.
8. Creates an agent tag using the received data from the API response.
9. Encodes the agent tag using Base64 encoding.

10. Cleans the received public key and assigns it to private_public_key .
11. Performs file and disk encryption using methods from the encryption module.
12. Writes a message containing the recovery instructions to a file named

HELP_RECOVER_ALL_MY_FILES.txt .
13. Deletes shadow copies using the delete_shadow_copies method from the file module in the

system module.

Case 2: One Argument
If one argument is provided, the code assumes it is a path to a private key file.

The code performs the following steps:

1. Reads the contents of the private key file.
2. Performs file and disk encryption using methods from the encryption module.

Limitations
The code assumes the usage of the tokio runtime for asynchronous operations.
The code relies on specific modules and their implementations in the c2 , encryption , and
system files. Ensure these files are present and contain the required functionality.
The code depends on specific C2 API endpoints and response formats. Modify the code if
using a different API or endpoints.

Examples

Example usage of the code:

Ensure that you have the required dependencies, modules, and files in your project before running
the code.

#[tokio::main]
async fn main() {
 // ... Code from the original main function
}

Revision #3
Created 3 July 2023 10:28:26 by Makito
Updated 3 July 2023 10:28:55 by Makito

